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Pattern formation in a vibrated granular layer: The pattern selection issue
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We present a numerical study of a surface instability occurring in a bidimensional vibrated granular layer.
The driving mechanism for the formation of stationary waves is closely followed. Two regimes of wavelength
selection are identified: a dispersive regime where the wavelength decreases with increasing frequency and a
saturation regime where the value of the wavelength is a constant depending on the number of grains in the
vertical direction. For the dispersive regime an empirical relation is proposed, based on dimensional arguments
involving transport properties in the layer. A comparison is made with existing experimental results in two and
three dimensions. For the saturation regime, a connection is established between the pattern formation and an
intrinsic instability occurring spontaneously in dissipative gases. The observed dependence on the layer height
is linked to a detailed dissipation mechanism for the collisions between grains.

PACS numbes): 45.70.Qj, 81.05.Rm

[. INTRODUCTION quency squared for a “pure” gravity restoring mechanism.
An exception may be made for the article by Eggers and
Granular assemblies under vertical vibrations show a verjRiecke[19], who really tried to fit some of the experimental
broad and interesting phenomenology. They have been stuesults. But in this article the momentum transfer relation
ied from various different viewpoints experimentally, nu- Was designed in aad hocmanner to agree with the experi-

merically, or theoreticallyfor extensive reviews on the sub- renxznctﬁl ﬂ:éperr:\'/?tn gzlagﬁg'erl]rggggi vevnra:elr?t;b;rfévsei?naslagga
ject see[1,2] and references therginin a series of y 9 y dep  EXP

experiments Melo, Ubanhovar, and Swinr@j reported a data were taken in a domain where the layer height is still
P L 2 I porte . comparable with the wavelength size and thus internal mo-
pattern-forming instability occurring in a layer of grains vi-

) i . tion might still play a role. Nevertheless, there are strong
brating on a platesee alsg4]). This phenomenon is the ,iaces of evidence that in the low frequency limit pure grav-
three-dimensional3D) version of a surfac_e instability first iFt)y wave behavior should be found. Tﬂe diffzsive aelsatzgmay
reported by Fauve, Douady, and Laro¢béin a small rect- ot he crucial to understanding the issue of pattern formation
angular cell containing sand. The phenomenology of the 3Qsquare, stripe, hexagon, étbut as far as mass, momentum,
patterns(squares, stripes, hexagorns strongly reminiscent and energy transfer mechanisms are concerned it is likely
of the outcome for a parametric instability occurring in vi- that it is not the proper physical mechanism. Recently, start-
brated fluid layers called the Faraday instabiliy (see Ref. ing from a set of continuum equations describing granular
[7] for a modern viewpoint and referenge$he pattern phe- gases, Bizon, Shattuck, and Swi20] found a pattern selec-
nomenology exhibits interesting features such as localizetion mechanism for an isothermal and incompressible fluid
excitation (the so-called oscillons[8] as well as skew- with an effective viscosity also designed to fit the data. Fi-
varicose patternf9]. Experiments showing surface patternsnally, a recent report was made on a large series of experi-
were also performed on 2D granular layers confined in a 2Dnental measurements addressing the issue of wavelength se-
cell [10]. The dispersion relation of the excited standinglection in 3D. Propositions were made to link the observed
waves was related quantitatively to the dispersion relatiofvavelength to the mobility properties of the grafi2d].

observed in 3D. In a first approximation, the phenomenon is !N our opinion, in spite of those many different ap-

a parametric resonance occurring at a time scale corresponfroaches, there is still no full understanding of the basic
ing to gravity restoring mechanisms of the layer deforma-mechanisms driving this instability. The fundamen'tal_ aspects
tions. Numerical simulations were performed using an event(-)f energy, mass, and momentum transfers are still ill under-
driven algorithm in a 2D geometiyL 1], and in 3D[12] also stood._ln th!s paper we present an extensive .StUdY of 2D
using a soft-particle algorithifil3] qualitatively reproducing .”“mef'ca' S'.mUIat'Or's of dlssllpatlve grains which aims to
the phenomenon. Recent simulations of a simplified toynvesngate n det_all the various me(;hqnlsms Igadmg to
model for horizontal momentum transfer also reproduce thé(vavelength select|.on. We use an optimized version of an
pattern formatiorf14] and in some limit the dispersion rela- event-driven algorithm alrgady presentgd by Ludsigl. .
tion. Various theoretical models have been proposed to de[-ll]' We propose h_ere a view slightly dlfferent_from previ-
scribe the pattern-forming instabilifyl5—-19 but, although ous ones and Wwe give evidence fqr a mechanism of pattern
displaying a close pattern phenomenology, they do not givgelecnon. Preliminary results on this issue were already pre-
the proper measured dispersion relation. Basically, the ho”@ented elsewher22].
zontal momentum transfer is accounted for phenomenologi- Il NUMERICAL SIMULATION

cally with a diffusive term. This provides a selected wave-

length decreasing like the inverse square root of the The system we investigate consistsNbbeads in a con-
frequency instead of, roughly, like the inverse of the fre-tainer of sizel, constrained to move in 2D. The bottom plate
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L 144T FIG. 1. Display of the vibrated
layer during two vibration peri-
ods. Black particles have a hori-
zontal velocity to the right and

1=1.56T gray ones to the left. The simula-
tion parameters areN,=12, f
=15Hz,d=1 mm, andl'=3.6.

t=0.84T

3 1=0.96T

t=1.08T 1=1.68T
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moves vertically with a trajectorg(t)=asinet [a is the  of Clementetal. [10], i.e., for typical impact velocities)
amplitude andf = w/27 the frequency The boundary con- =1 m/s, we have:=0.6. Also, we checked that this param-
ditions areperiodic. Our simulation principle is based on the eter choice 8, and w) is noncritical as long as there {§
so-called event-driven method, which is suited for hardenough dissipation to avoid fluidization of the lay28], (ii)
spheres only. As a consequence, we have no explicit inte@ dissipation cutoff to avoid inelastic collaps], and iii)
action potential. The interaction rules are provided in a col-some friction between the beads and with the bottom plate,
lision matrix which tells us, for each collision, what happensin order to stabilize the patterns.

to the rotation and translation velocities after the collision as

a function of rotation and translation velocities before the

shock. This is a very efficient method in a situation where . PATTERN PHENOMENOLOGY

the'd'ynamlcs can be de'compos.ed into sequences of' plnary For a relative acceleratiofi=aew
collisions. The collision interactions stem from a collision
matrix described in Ref11] whose physical foundations can
be found in Refs[23,24. The collision parameters are a
frontal restitutions coefficient, a tangential restitution coef-
ficient B (with a maximal valueB,), and a friction coeffi-
cient u. To avoid as much as possible the so-called inelasti
collapse[25], the frontal restitution coefficient is taken to
decrease with velocity:

2|g situated in a mod-
erate range beyond the threshdle=2.5 up tol'=4, an in-
stability occurs and a stationary pattern is obtained with a
wavelengthh roughly constanfwithin a few percent The
pattern is made of peaks such that minima and maxima ex-
change positions at each period of excitatisee Fig. L
The impact frequency corresponds to the vibration frequency
and the layer response is then @§= w/2. The instability
stops for values of the acceleration aroune 4.2; this is

u\ 5 due to a well known problem of matching between the
e(u)=1- 80( —*) (1) downward velocity of the plate and the velocity of the falling

u layer (see the discussion on this effect and referencé2]in
The instability is resumed for larger acceleratigasound
['=6) but with a free flight of the layer lasting twice the
excitation period; the layer response is thep= w/4. As
already noticed in Refd3] and[10], two important phases
of the layer response can be considered: the free flight phase
aElasting about 1/2) where the peak pattern is forming, and
. ) X he energy input phase, where the plate is in contact with the
[27]. TheN sp_heres of_dmmeten‘ are |n|t|a_\lly pack_ed In T[he layer and provides energy into the system. In general, the
cells with horizontal widthL; the layer thickness is defined peak zone collides at a phase slightly delayed with respect to
as H=+/2 Nyd. The algorithm efficiency is improved by the minimum zone. This is due to the general presence of an
implementation of a time delay procedure applied to thearch at the bottom of the layer as already observed experi-
search of the event sequenf28]. Such a procedure in- mentally[10] and numerically[11].
creases the computing time @¢N log N) instead ofO(N?) In Fig. 2, we represent the pressure and density fields
for a standard event-driven algorithil]. The simulations superposed for two different frequencies. Spatial distortion
can handle system sizes as largeNss O(10°) particles.  of the layer as well as internal compression and dilation
Typically we uses,=0.4 (for bead-plate collisions, this co- waves are evident in this plot. We also observe that the peak
efficient is set equal t0)0The other physical parameters are wavelength, the bottom arch amplitude, and the peak ampli-

0=0.0 andu=0.2. This choice was made to get as close agude decrease as the frequency is increased.

possible to the aluminum bead values used in the experiment In Fig. 3, we display a spatiotemporal diagram of the

with u the relative velocity in the normal direction and
=1m/s. This is the so-called Herz-Kuwabara-Kono model
[26]. A dissipation cutoff is introduced for small impact ve-
locities (for u<uy=10"°ms ! we sete=1). The impor-
tance and the influence of this “trick” to avoid inelastic
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FIG. 2. Display of the pressure fieldssolineg and density fieldggray scalg for a time series over one period. The simulation
parameters ard=1 mm andl’=3.6. (a) N,=6, f =10 Hz such thaHHk=0.68; (b) N,=12, f=15 Hz such thaHk=1.86.

pressure on the plate at the moment when the layer finishes this instant almost no mechanical contact with the plate.
its free fall and we observe indeed a regular but nonunifornThis velocity difference contributes to the peak formation as
distribution of pressures driving the layer. The general reawell as the distortion of the layer creating the arches.

son for this high pressure impact and nonuniformity is both In Fig. 4, we checked that the peak amplityzlscales as
the presence of a higher compaction state inside the pealgs=4a, consistently with a previous experimental determina-
and a larger number of particles in the vertical direcicor-  tion [10]. Here, we recall the simple scaling argument. The
responding to the peak amplitydeAs a consequence, an peak amplitude is, in first approximation, proportional to the
important momentum flux is initially localized on the plate at maximum velocity differencdi.e., ~aw) between regions
the peak positions. These regions of high pressure transfef the layer before the free flight. The pattern develops dur-
large horizontal momentum to regions of low pressureing the free flight over half a period.e., ~1/w). Thus, the
Thereafter, two horizontal energetic masses flow from theroduct of the two terms gives a scale for the vertical sepa-
former peak positions in order to collide head on at the placeation between these regions. As a consequence, the peak
where a dip was formerly present. Due to the presence of themplitude is proportional to the excitation amplitude. Of
bottom plate, this head-on collision results in an upward mo<€ourse, the velocity difference and the time of flight should
mentum flux. When the amplitude of the plate is at its high-also depend in principle on the reduced acceleration. But,
est point, the layer is almost flat, but the spatial distributioninterestingly, this dependence is rather weak in the condi-
of extra upward momenturfi.e., with a velocity higher than tions where the patterns develop.

the average layer velocitywill mark the place for a new

peak when the layer leaves the plate again. We see that this IV. PATTERN WAVELENGTH SELECTION
nonuniform driving, in time and space, dspriori quite dif-
ferent from the driving mechanism in fluideamely, auni- Now we investigate the wavelength selected at a constant

form acceleration modulatignWe also noticed that, just be- driving acceleration. Note that the choice of a constant ac-
fore the free flight regime, regions where the former peakseleration is made in reference to the basic model of a single
were present and where the pressure is high are still in corand completely inelastic block driven by a vibrating plate. In
tact with the plate and subsequently will fall with a small this case, the acceleration is the fundamental parameter de-
initial velocity. Regions with a high upward momentum havescribing the block dynamics and in particular the rates of
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FIG. 5. Selected wavelength=2=/k displayed in the form
X/d w?/4gk as a function oHk; /27 is the driving. The continuous

line is y=tanhx. Plots for N,=6, d=1mm (O); N,=6, d
FIG. 3. Spatiotemporal diagram in arbitrary gray units of the =1.5 mm(d); N,=12,d=1 mm ($); N;,=12,d=1.5 mm(A).
horizontal pressure on the plate as a function of the rescaledttime
The results were obtained fdr=15Hz, I'=3.6, d=1mm, and  gn the impact frequengyuch that the wavelength selected is
N, =12 layers of grains. surprisingly close to that given by the dispersion relation for
gravity waves in a fluidfi.e., ?/4gk=0(1)] and (ii) at
collision and energy transfésee[2] and references thergin  larger frequencies a saturation regime=2w/k=const)
Since the layer dissipates most of its energy on each collisiowith a crossover depending on the layer height. Now both
with the plate, it is natural to consider in a first approxima-regimes are examined independently and computations made
tion that the center of mass will follow such a dynamics. Wein a large range of bead sizes, frequencies, layer heights, and
monitored the wavelength of the patteks 27/k, using the  accelerations.
horizontal density autocorrelation function technique de-
scribed in Ref[11], which marks the presence of the peaks. A. The dispersive regime
In Fig. 5, we present simulation resultslat 3.6 where
the pattern is fully developed for two layer heighits=6
and 12. The quantityuélgk is plotted as a function offk

Simulation results for the dispersive regime are presented
in Fig. 6. In this representation, we observe a collapse of the
=2mH/N. We recall that for the Faraday instability, corre- whole data set around a straight slope bzounded by two ex-
sponding to the parametric excitation of gravity waves, ond'éme values: 0.25Hk<2.8 and 0.4 wg/gk<1.5. For
would get a dispersion relatiofat the edge of instability Hk<0.25, we could not obtain stgble patterns; the height of
w?l4gk=tanh@Hk) [30]. In this representation, we observe the peaks bgmg so large, we obtained a_LvertpaI rupture of the
two different regimes: (i) at low frequencies a dispersive layer. We simulated the pattern formation using three accel-

regime(we mean here that the wavelength depemxgicitly ~ €rations. We havé’=2.5, just above the threshold, thén
=3.6, and alsd'=6.8. In the last case, the collision fre-

quency is just one period larger than 1o+ 3.6 and thus the
response is,= w/4. The data collapse is interrupted at high
70 ] frequencies by wavelength saturatiog(Ny, ,d), whose val-
ues are reported in Fig. (&ee next subsectipnNote that
there is still in this representation some important data scat-
so b tering due, for the most part, to the difficulty of extracting a
h/a wavelength with a precision down to a few grain sizes. This
L i R B o T e R EE T T is essentially the meaning of the error bars in Fige) @nd
7. It can be relatively important for small wavelengths.,
whenHk>1). Within the data scattering, we could not show

8.0

6.0 [

3.0+

20 ON=Bg=imm in this representation systematic variations of the data col-
©N=12 d=0.5mm lapse with acceleration. The empirical best fit of the data is
top ANstoo=Tam the straight line:
%% 100 120 140 16.0 180 200 22.0 w%/g k=A+BHk (2)
f (Hz)

[see Fig. 6] with A=0.44(=0.02) and

FIG. 4. Rescaled amplitude of the pegkia as a function of B=0.37 (=0.01). We verified that these results are in rea-
frequencyf for I'=3.6. The horizontal line is the experimental de- sonable agreement with the wavelength selection observed
terminationp/a=4.N,=6,d=1 mm, (O); N,=12,d=1 mm (H); experimentally in 2010] and 3D[3,21] [see Fig. €b)]. For
Np,=12,d=0.5mm(<): N,=16,d=1 mm (A). the 2D case, we do not recover the slight shift of the experi-
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Hk pictures are obtained in the same conditions but for different dissi-

) ] pation coefficient parametees, [see Eq(1)].
FIG. 6. Dispersive part of the selected wavelength 27/k

displayed in the formw3/gk as a function oHk; wg/27 is the layer  and since we also haye~a we obtainpaw?~ pga/\. This
response frequency. Plots fod,=6, d=1 mm (O); N,=6, d relation is a dimensional argument that could explain why
=1.5mm0); Np=12,d=1mm (O); Ny=12,d=1.5mm(4A).  we observe the limiting law for “pure” gravity waves

(a) Dispersive part fol'=3.6(O); 2.6 (M); 6.8(A) (for many layer  (,2/gk— const at low frequencies, i.e., in the limit whexe
heights and bead diametgr3he dotted line is the empirical linear >H. This relation would agree with the qualitative picture
best fit arnd crosses are typ.ical error pdbs).Same dato but com- given by Melo, Ubanbovar, and Swinng§]. But at larger
pared with other empirical fits. Line 1 is from R¢f0] in 2D for g0 ,enciegbefore saturationthe internal density and pres-
N,=6, line 2 is from Ref[l_O] in 2_D forN,=12, I|r1e3 is from Ref. sure waves play an important role as wigke Fig. 2b)]

[3] for Ny =6 in 3D, and line 4 is from Ref.21] in 3D. since now the peak amplitude is small, and we propose that

mental dispersion relation with the number of layérst the the Iir_niting restoring mechanism corresponds to rhe limiting
height as was proposed earlier to fit the d@t®]. This is velocity of a shock wave caused by the impact with the bot-
possibly due to the general experimental problems in 2DIOM plate. If we estimate its velocity to be of magnitude
where interactions with the frontal boundaries might play a~ @ we then propose a contribution to the dispersion
role. For the recent data set collected by Umbanhowar angglation of the typew=ck and thusw?/gk~kH. As a con-
Swinney[21] the proposed fih/H=1+1.1(f JH/g) “-32js  Sequence, in our understanding, the selection mechanism is a
very close to our data in the regiddK<1 but seems to COMPplex interplay between the possibilities of global defor-
exhibit a slight discrepancy fdfdK>1. In our understand- Mation of the granular layefi.e., arching and peak ampli-
ing, an open question is how much the weight of the saturalud® and the internal dynamics of pressure/density waves

tion regime datdwhich should have been removed in prin- du€ to the vertical impact. _
ciple) is still influencing the empirical fit proposed by ~ Furthermore, in reference to the 3D patterns, we notice
Umbanhowar and Swinne§21]. Such a spurious effect |mme_o_I|ater that, in our framework of interpretation, the
could possibly have created a systematic deviation of the fifansition from square to stripe occurs when both mecha-
to the upper part of the diagram as witnessed by curve 4 dgiiSms(gravity and pressure waveare of the same magni-
Fig. 6(b). tudo, i.e., A=BHk. Thzrs corresponds more precr_sely, fol-
Note that the presence of a restoring mechanism due t@Wing Ref.[12], to wg/gk=0.96 andHk=1.4. It is thus
gravity (the peaks are Co||apsing on the p)am consistent similar to the criterion proposed empirically by Bizenal.
with the standard mechanical picture where the average m212] to predict this transition, i.e.f*=f\H/g=0.37. But
mentum density or the mass fluxes transferred during thénterestingly, for higher acceleration arouhie- 6, by apply-
energy input phase~pVim,ac/T) are driven by a pressure ing our criterion 3/gk=0.96=Hk=1.4), we get a predic-
difference on the scale of the wavelength AP/\). If we  tion for the transition that is* =f\H/g=0.71. This last
estimate that the pressure difference scales with the pegkediction is really in close agreement with the experimental
amplitudep, i.e., AP~ pgp, we obtain the balance equation, finding of[3]. In this last situation, where,= w/4, the tran-
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FIG. 8. Saturation regime of the selected wavelenyth/d as 35
a function of the number of layemd,,. (@) Numerical results for w0l
d=0.5(*), 1 (O), 1.5(¢), 2 (M), and 3 mm(A); the straight line ' iny
is the theoretical predictiofsee text (b) Experimental data ex- 55 | H—r =t {
tracted from Fig. 2 of Refl10] (O) and Fig. 3 of Ref[3] (M). A
F_g 7L
20 t
sition is observed for 06f\H/g=<0.8. Ao/ d ik
In Fig. 7, we illustrate the fact that, in this regime, the 15 ¢ -
selection pattern does not depend on the detailed dissipativ
character of the granular collisions. It is essentially due to o
large scale momentum transfer. We display a picture of the
waves for increasing restitution coefficigiiecreasing dissi- 5
pation. The selected wavelength stays constant but the sys o
tem is moving progressively toward an extended fluidization 0 5 10 15 20 25 30 33
whenego— 1. (b) A/ d

As a consequence, in the dispersive regime, the physical _ _ _ ) )
picture we propose is to the best of our knowledge very FIG. 9. Time development of patterns in a numerical simulation

consistent with all the experimental and numerical result®erformed in the dispersive regimé) Is a visualization of the
available wavelength growth(b) Shows the early selected wavelength

(after the first two collisionsfor a simulation in the dispersive
regime as a function of the saturation wavelength, obtained at
B. The saturation regime higher frequencies and for a constant acceleralier.6.

Now, we focus on the saturating regime obtained at high
frequencies. We measure the saturation wavelehgthfor  increase of the saturation wavelength value with the layer
various pairs of parameterslf,d). From our measurements height. In the 3D case the layer height is almost the same for
[see Fig. 83)], we observe a roughly linear increase of thisthe three cases reported. The bead size is changed. Thus, we

selected length with the number of layers. see that the grain size effect on the saturation wavelength is
In Fig. 8), we report some experimental data taken fromquite important.
Ref.[10] in 2D and extracted from Ref3] in 3D that show By monitoring the development of the pattern in tfis-

saturation. The 2D case was obtained with a constant begeersive regimewe realized that at the first and second im-
size (1.5 mm aluminum beadsWe actually have a clear pact a typical wavelengthg is already selected characteriz-
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FIG. 11. Layer kinetic energl(t) rescaled by the initial kinetic
Sk ( b) energy E, before impact as a function of rescaled timé
30 Ay =t/t. . The layer height isN,=40 beads. From top to bottom,
d e=1, 0.99, 0.98, 0.97, 0.96, and 0.94.

waves we are interested in are compaction/dilation waves for
hard spheres. The problem of energy and momentum transfer

(¢) due to a shock with a plate has been studied analytically and
10 20 30 by numerical simulations for 1D columns of hard and dissi-
As/d pative graing[25,33. Note that these waves may be quite

different from those obtained in the case of columns made of

FIG. 10. Layer instability after impact at a constant velo¢itg soft particles[34,29,35,36 where the detailed value of the

gravity). (a) Visualization of the pattern formation after impagt) interparticle potential plays a central role.
Time evolution of the horizontal density structure fac8r. Frqm As a first step, the study is made with values of the resti-
bottom to top,t=0.03, 0.06, 0.09, 0.12, and 0.15(s) Saturation inn coefficient independent of the impact velocities. We
wavelengthgxsat afsla fu"r;ctlon of the selected wavelengtpifor the ), jate o layer oNy, grains(vertical direction initially pre-
same humber ot fayeiSh - pared in a quasitriangular array but with a typical separation
between grains arouns},, the value being taken at random
ing a modulation of the horizontal densftyee Fig. @)]. At around this mean. The values &f we are interested in are
long times, we get the expected dispersive wavelengtim such thats,/d<1 (typically s,/d ranging between 0.01 and
agreement with relatiori2). This initial length Ao(N,.d)  0.1). In this compacted limit, the exact value s§/d does
correspond®xactlyto the saturation lengthg,( Ny, ,d) that ot matter much. The grains have an initial velocityJ,,
we obtain at steady state when the frequency is increasqg  pointing toward the plate. We identify two important
(keeping a constant acceleratidsee Fig. %)]. hases as a result of the impact.

Now we relate this early pattern selection to the generaP (i) Just after the impact, an upward compression wave and
issue of a granular stripe instability, initially at rest and in they gownward dilation wave cross the layer vertically at very
absencg of g'rav.it[/s.ee Fig. 1(8)]. We calculate the horizon- large speedt~U,d/s,. These waves cross the system on a
tal density distributions(x) = [ p(x,Z)dz. The power spec- time scalet,,=Nys,/Uy. They do not cause global distor-
trum of this distributionS,= (@@ ) is monitored as a func- tion of the layer but are extremely dissipative. To illustrate
tion of time [Fig. 10b)]. We observe a band of unstable this point, we display in Fig. 11 the time evolution of the
modes with the fastest growing wavelength characterized byinetic energy as a function of the rescaled tittte,, for a
the wave numbeks=2m/\s. In Fig. 10c), we report this  |ayer of N,,=40 grains and several different restitution coef-
selected wavelengths as a function of the saturation wave- ficients. We see that for (1s)N;,=2 we already have an
length for various sets of experiments;,(Ny,,d). We ob-  aimost complete dissipation of the energy, as already noted
serve that\s=\o=Asa(Np,d). This is why, in the follow-  py Luding, Herrmann, and Blumdi37].
ing, we report results of a systematic study on the pattern (i) After the passage of those waves an expansion of the
created by the impact of a moving plate on a layer of grainsjayer follows, characterized by a vertical increasing velocity

gradient G=0V(z)/9z>0, and subsequently, after a time
V. STUDY OF IMPACTED LAYERS OF GRAINS texp, the layer will lose contact with the plate to expand in
vacuum. The time scale to reach this expansion is such that
texsG=0(1) [see Fig. 129)]. A systematic study of the scal-

In the following, we report results on the internal dynam-ing behavior of this gradient shows that we have
ics of an impacted layer of dissipative grains in 2D. A more
complete study of this issue was done by Labfd and
will be reported elsewher2]. For the present purpose, we
present only the results relevant to a discussion of the pattern
wavelength selection of the “granular Faraday” waves. Thewith é¢=1.1*+0.15[see Fig. 1®)].

A. Constant restitution coefficient

Uo
G~ exil — ¢é(Ny—1)(1-#)] ®
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(b) MN-Dl=2) FIG. 13. Dependence of the selected wavelengtbn dissipa-
tion for an impacted layer(a) Simulation results for a constant
4.0 restitution coefficient, rescaled selected wavelength(1—¢2)/d
1 :’:Ih :180 plotted as a function of the dissipation £%2). (b) Simulation
° Ni IS results for a velocity dependent restitution coefficient; the rescaled
8 3 20 wavelengthh4(1—e?)*%/d is plotted as a function of the initial
T restitutione; . The layer heights used aM,=6,8,10,12; the hori-
zontal dotted line iyy=14.7.
4 I IJ & 4 e different constant coefficients of restitutien(we recall that
“’J_El ? 1 now ¢ is independent of the collision velocitiesWe can
distinguish two limiting regimes such that
00 1 A Il
0.0 0.5 LO L5 20

. ~ _o2\B
©) Ny D) (1 - 8 Ns/d=~1/(1—¢°)P, (5)
where B=1 in the strong dissipation regimg.e., 1—¢

FIG. 12. Internal dynamics of an impacted layer of grai@. ~=0O(1)] and 8=0.44+0.08=0.5 in the weak dissipation
texp, the time to reach the expansion phase, rescaled by the velocifymit (i.e., 1—e—0). Note that such scaling relations be-
gradientG as a function of the parametd=(1—¢)(N,—1). () tween a structural length scale and a restitution coefficient
Log-normal plot of the rescaled velocity gradiéhk/U, as afunc-  have already been identified in the case of freely evolving
tion of X. (c) Tempera_tureT* gt the onsgt of the expansion phase granular gases. The scaling wigh=1 is naturally occurring
rescaled by the velocity gradiefit/(Gd)® as a function oix. in the formation of 1D structures and clusters with long last-

ing multiple contactd25] and the scaling with3=0.5 is

At the beginning of the expansion phase, the layer exhiby, 51,141y occurring at the onset of a structural instability in

it.z a quasiuniform agitation characterized by a temperaturgeayly dissipative granular gases described by dissipative
T*. A systematic study of th'f temperzatl_,(taken justabove  hyqrodynamicg3s]. Importantly, for constant restitution co-
the bottom plateshows thafT* =(Gd)*, i.e., efficients, these regimes show a selected wavelength value
\s that isindependenbf the number of layers\y, .
2
0
™= Cigz d?exd —2£(Ny—1)(1—¢)] (4) B. Velocity dependent restitution coefficient

Now, we pursue the same study but with a restitution
with C;=1.1+0.1. [see Fig. 1&)] During the expansion coefficient depending on the collision velocity. We have in
phase, the layer is unstable and a wavelength characterizinglae early stage an impact with a layer moving at a constant
density modulation in the horizontal direction shows up. Invelocity —U;, and therefore, a typical initial restitution co-
Fig. 13a), we represent the value of this wavelength forefficiente;=1—¢gy(U;/u*)* (for our simulations we use
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=1). But after a large number of impacts, the average kineti@ consequence, the presence of an intrinsic instability due to

energy of the layer is decreased and we get a typical finahe dissipative character of the granular collisions prevents

restitution coefficiente;=1—¢gy(U;/u*)® characterized by the selected wavelength from decreasitwhen the fre-

a typical collision velocityU; just before the expansion quency is increas@do a value smaller than this intrinsic

phase. dissipative length. The vibrations are here only to sustain the
Therefore, using a relation setting the scale of the typicamotion due to this imposed density modulation and drive the

collision velocity to the order of the agitation at the onset ofdynamics such that larger densities in the layer create larger

the expansion phase, i.e., agitations and thus larger pressures. As a consequence, a
horizontal flow develops toward lower pressure regions and
T*=U?, (6)  the alternative horizontal motion is sustained at the pace of

the vertical impacts with the plate. The dependence of the
we estimate the final restitution coefficient using the relatiorsaturated wavelength on the number of layers is related to
the dissipation properties of the grains, which depend on the
1—¢&; N typical collision velocities between two grains. Also, in the
1—g; =(Ur/Up®. () case of real systems the restitution coefficient on binary col-
lision may vary with the grain sizésee[24]). For example,
Now we report the results of a series of numerical simulain the case of the Herz-Kuwabara-Kono model, one would
tions with varying layer heights and initial restitution coeffi- geteo~d~ Y2 Thus, it is clear that a systematic study of the
cients. For each numerical simulation, we determine the finabariation this selected saturation wavelength with the bead
restitution coefficiente; according to relation(7) and we size and the layer height could possibly shed some light on
measure the selected wavelength In Fig. 13b) we plot  the real dissipation mechanisms taking place at the granular
the rescaled wavelength,(1—&%)*%/d as a function of the level for a dense assembly of vibrated grains.
initial restitution coefficient; . Thus we estimate the scaling
relation VI. CONCLUSION

In conclusion, we presented a numerical study of a
= 5 (8) pattern-forming instability occurring in a 2D vibrated layer
(1-s7)P of dissipative grains. We focused on mechanisms leading to
the formation of stationary oscillating surface peaks that are
with 8=0.5 andC=15=2. Now the dependence of the se- separated by a well defined wavelengtk 27/k. We iden-
lected wavelength on the number of layers is implicitly con-tified two distinct regimes. The first regintdispersive cor-
tained in the value of the final restitution coefficient sinceresponds to a periodic excitation of the layer where the grav-
this last relation depends on the final temperature obtainey restoring force plays an important role in competition
from relation(4). The =3 exponent indicates that the se- with internal density and pressure waves created by repeated
lection mechanism for the wavelength rather corresponds timpacts with the bottom plate. The dispersion relation is
the weak dissipation limit we identified previouggithough  sych that we have in general a relation of the tw‘ﬁMgk

Ao/d

the dissipation was quite high initially =0(1) with a value smaller for thin channels and larger for
thick channelgsizes being compared to the selected wave-
C. The saturation regime revisited length. The frequencyf,= wy/27 is the pattern response

As a consequence of putting together E@—(8) we get frequency. We propose an empmcall relat|mﬁl4g k=A
a mean-field theoretical prediction for the saturation wave-+ BHk with values ofA and B almost independent of the
length. The value ofz obtained numerically by solving driving accel_eratlo_n. Th_e agreement with available experi-
these relations is displayed in Fig@8 In the limit &;—1, mental data is quite satisfactory. At larger frequendes

we obtain an asymptotic formula for the selected wavelengti¢eleration being constanthis dispersion relation is inter-
for any @ andNj,: rupted by a saturation regime where the wavelength is now

independent of the frequency. We show how this wavelength

1 a selection is related to an instability occurring spontaneously

Ng/d=~ mNﬁ’zexp{E EN,—D)(1—¢gp)|. (9 in_dissip_ative gases _W_e also stress the irjfluence of the de-
! tailed microscopic dissipation laws affecting the values of

the selected wavelength.
We realize here that the exponential growth of the selected

length with the number of layers is damped by the weak ACKNOWLEDGMENT

value of the coefficientr characterizing the velocity depen-

dence of the dissipation. Thus, the two antagonistic effects We are grateful to Dr. S. Luding for many interesting
give an approximately linear increase of the wavelength. Agliscussions.
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