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Pattern formation in a vibrated granular layer: The pattern selection issue

E. Clément and L. Labous
Laboratoire des Milieux De´sordonne´s et Hétérogènes, CNRS UMR No. 7603, Universite´ Pierre et Marie Curie,

Boı̂te Postale 86, 4 Place Jussieu, F-75252 Paris, France
~Received 26 April 2000!

We present a numerical study of a surface instability occurring in a bidimensional vibrated granular layer.
The driving mechanism for the formation of stationary waves is closely followed. Two regimes of wavelength
selection are identified: a dispersive regime where the wavelength decreases with increasing frequency and a
saturation regime where the value of the wavelength is a constant depending on the number of grains in the
vertical direction. For the dispersive regime an empirical relation is proposed, based on dimensional arguments
involving transport properties in the layer. A comparison is made with existing experimental results in two and
three dimensions. For the saturation regime, a connection is established between the pattern formation and an
intrinsic instability occurring spontaneously in dissipative gases. The observed dependence on the layer height
is linked to a detailed dissipation mechanism for the collisions between grains.

PACS number~s!: 45.70.Qj, 81.05.Rm
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I. INTRODUCTION

Granular assemblies under vertical vibrations show a v
broad and interesting phenomenology. They have been s
ied from various different viewpoints experimentally, n
merically, or theoretically~for extensive reviews on the sub
ject see @1,2# and references therein!. In a series of
experiments Melo, Ubanhovar, and Swinney@3# reported a
pattern-forming instability occurring in a layer of grains v
brating on a plate~see also@4#!. This phenomenon is the
three-dimensional~3D! version of a surface instability firs
reported by Fauve, Douady, and Laroche@5# in a small rect-
angular cell containing sand. The phenomenology of the
patterns~squares, stripes, hexagons! is strongly reminiscent
of the outcome for a parametric instability occurring in v
brated fluid layers called the Faraday instability@6# ~see Ref.
@7# for a modern viewpoint and references!. The pattern phe-
nomenology exhibits interesting features such as locali
excitation ~the so-called oscillons! @8# as well as skew-
varicose patterns@9#. Experiments showing surface patter
were also performed on 2D granular layers confined in a
cell @10#. The dispersion relation of the excited standi
waves was related quantitatively to the dispersion rela
observed in 3D. In a first approximation, the phenomeno
a parametric resonance occurring at a time scale corresp
ing to gravity restoring mechanisms of the layer deform
tions. Numerical simulations were performed using an eve
driven algorithm in a 2D geometry@11#, and in 3D@12# also
using a soft-particle algorithm@13# qualitatively reproducing
the phenomenon. Recent simulations of a simplified
model for horizontal momentum transfer also reproduce
pattern formation@14# and in some limit the dispersion rela
tion. Various theoretical models have been proposed to
scribe the pattern-forming instability@15–19# but, although
displaying a close pattern phenomenology, they do not g
the proper measured dispersion relation. Basically, the h
zontal momentum transfer is accounted for phenomenol
cally with a diffusive term. This provides a selected wav
length decreasing like the inverse square root of
frequency instead of, roughly, like the inverse of the f
PRE 621063-651X/2000/62~6!/8314~10!/$15.00
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quency squared for a ‘‘pure’’ gravity restoring mechanis
An exception may be made for the article by Eggers a
Riecke@19#, who really tried to fit some of the experiment
results. But in this article the momentum transfer relati
was designed in anad hocmanner to agree with the exper
mental dispersion relation. In fact, what is observed is
exactly the gravity dependence; experimental and simula
data were taken in a domain where the layer height is
comparable with the wavelength size and thus internal m
tion might still play a role. Nevertheless, there are stro
pieces of evidence that in the low frequency limit pure gra
ity wave behavior should be found. The diffusive ansatz m
not be crucial to understanding the issue of pattern forma
~square, stripe, hexagon, etc.! but as far as mass, momentum
and energy transfer mechanisms are concerned it is lik
that it is not the proper physical mechanism. Recently, st
ing from a set of continuum equations describing granu
gases, Bizon, Shattuck, and Swift@20# found a pattern selec
tion mechanism for an isothermal and incompressible fl
with an effective viscosity also designed to fit the data.
nally, a recent report was made on a large series of exp
mental measurements addressing the issue of wavelengt
lection in 3D. Propositions were made to link the observ
wavelength to the mobility properties of the grains@21#.

In our opinion, in spite of those many different ap
proaches, there is still no full understanding of the ba
mechanisms driving this instability. The fundamental aspe
of energy, mass, and momentum transfers are still ill und
stood. In this paper we present an extensive study of
numerical simulations of dissipative grains which aims
investigate in detail the various mechanisms leading
wavelength selection. We use an optimized version of
event-driven algorithm already presented by Ludinget al.
@11#. We propose here a view slightly different from prev
ous ones and we give evidence for a mechanism of pat
selection. Preliminary results on this issue were already p
sented elsewhere@22#.

II. NUMERICAL SIMULATION

The system we investigate consists ofN beads in a con-
tainer of sizeL, constrained to move in 2D. The bottom pla
8314 ©2000 The American Physical Society
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FIG. 1. Display of the vibrated
layer during two vibration peri-
ods. Black particles have a hori
zontal velocity to the right and
gray ones to the left. The simula
tion parameters areNh512, f
515 Hz, d51 mm, andG53.6.
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moves vertically with a trajectoryz(t)5a sinvt @a is the
amplitude andf 5v/2p the frequency#. The boundary con-
ditions areperiodic. Our simulation principle is based on th
so-called event-driven method, which is suited for ha
spheres only. As a consequence, we have no explicit in
action potential. The interaction rules are provided in a c
lision matrix which tells us, for each collision, what happe
to the rotation and translation velocities after the collision
a function of rotation and translation velocities before t
shock. This is a very efficient method in a situation whe
the dynamics can be decomposed into sequences of b
collisions. The collision interactions stem from a collisio
matrix described in Ref.@11# whose physical foundations ca
be found in Refs.@23,24#. The collision parameters are
frontal restitution« coefficient, a tangential restitution coe
ficient b ~with a maximal valueb0), and a friction coeffi-
cientm. To avoid as much as possible the so-called inela
collapse@25#, the frontal restitution coefficient is taken t
decrease with velocity:

«~u!512«0S u

u* D 1/5

~1!

with u the relative velocity in the normal direction andu*
51 m/s. This is the so-called Herz-Kuwabara-Kono mo
@26#. A dissipation cutoff is introduced for small impact ve
locities ~for u,u051026 m s21 we set«51). The impor-
tance and the influence of this ‘‘trick’’ to avoid inelast
collapse was investigated in detail by Luding and McNam
@27#. TheN spheres of diameterd are initially packed in the
cells with horizontal widthL; the layer thickness is define

as H5A 3
2 Nhd. The algorithm efficiency is improved b

implementation of a time delay procedure applied to
search of the event sequence@28#. Such a procedure in
creases the computing time asO(N logN) instead ofO(N2)
for a standard event-driven algorithm@11#. The simulations
can handle system sizes as large asN5O(105) particles.
Typically we use«050.4 ~for bead-plate collisions, this co
efficient is set equal to 0!. The other physical parameters a
b050.0 andm50.2. This choice was made to get as close
possible to the aluminum bead values used in the experim
d
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of Clément et al. @10#, i.e., for typical impact velocitiesU
51 m/s, we have«50.6. Also, we checked that this param
eter choice (b0 and m! is noncritical as long as there is~i!
enough dissipation to avoid fluidization of the layer@29#, ~ii !
a dissipation cutoff to avoid inelastic collapse@25#, and~iii !
some friction between the beads and with the bottom pl
in order to stabilize the patterns.

III. PATTERN PHENOMENOLOGY

For a relative accelerationG5av2/g situated in a mod-
erate range beyond the thresholdG.2.5 up toG54, an in-
stability occurs and a stationary pattern is obtained with
wavelengthl roughly constant~within a few percent!. The
pattern is made of peaks such that minima and maxima
change positions at each period of excitation~see Fig. 1!.
The impact frequency corresponds to the vibration freque
and the layer response is then atv05v/2. The instability
stops for values of the acceleration aroundG54.2; this is
due to a well known problem of matching between t
downward velocity of the plate and the velocity of the fallin
layer ~see the discussion on this effect and references in@2#!.
The instability is resumed for larger accelerations~around
G56) but with a free flight of the layer lasting twice th
excitation period; the layer response is thenv05v/4. As
already noticed in Refs.@3# and @10#, two important phases
of the layer response can be considered: the free flight ph
~lasting about 1/2f ) where the peak pattern is forming, an
the energy input phase, where the plate is in contact with
layer and provides energy into the system. In general,
peak zone collides at a phase slightly delayed with respec
the minimum zone. This is due to the general presence o
arch at the bottom of the layer as already observed exp
mentally @10# and numerically@11#.

In Fig. 2, we represent the pressure and density fie
superposed for two different frequencies. Spatial distort
of the layer as well as internal compression and dilat
waves are evident in this plot. We also observe that the p
wavelength, the bottom arch amplitude, and the peak am
tude decrease as the frequency is increased.

In Fig. 3, we display a spatiotemporal diagram of t
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FIG. 2. Display of the pressure fields~isolines! and density fields~gray scale! for a time series over one period. The simulatio
parameters ared51 mm andG53.6. ~a! Nh56, f 510 Hz such thatHk50.68; ~b! Nh512, f 515 Hz such thatHk51.86.
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pressure on the plate at the moment when the layer finis
its free fall and we observe indeed a regular but nonunifo
distribution of pressures driving the layer. The general r
son for this high pressure impact and nonuniformity is b
the presence of a higher compaction state inside the p
and a larger number of particles in the vertical direction~cor-
responding to the peak amplitude!. As a consequence, a
important momentum flux is initially localized on the plate
the peak positions. These regions of high pressure tran
large horizontal momentum to regions of low pressu
Thereafter, two horizontal energetic masses flow from
former peak positions in order to collide head on at the pl
where a dip was formerly present. Due to the presence of
bottom plate, this head-on collision results in an upward m
mentum flux. When the amplitude of the plate is at its hig
est point, the layer is almost flat, but the spatial distribut
of extra upward momentum~i.e., with a velocity higher than
the average layer velocity! will mark the place for a new
peak when the layer leaves the plate again. We see that
nonuniform driving, in time and space, isa priori quite dif-
ferent from the driving mechanism in fluids~namely, auni-
form acceleration modulation!. We also noticed that, just be
fore the free flight regime, regions where the former pe
were present and where the pressure is high are still in c
tact with the plate and subsequently will fall with a sm
initial velocity. Regions with a high upward momentum ha
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at this instant almost no mechanical contact with the pla
This velocity difference contributes to the peak formation
well as the distortion of the layer creating the arches.

In Fig. 4, we checked that the peak amplitudep scales as
p.4a, consistently with a previous experimental determin
tion @10#. Here, we recall the simple scaling argument. T
peak amplitude is, in first approximation, proportional to t
maximum velocity difference~i.e., 'av) between regions
of the layer before the free flight. The pattern develops d
ing the free flight over half a period~i.e., '1/v!. Thus, the
product of the two terms gives a scale for the vertical se
ration between these regions. As a consequence, the
amplitude is proportional to the excitation amplitude. O
course, the velocity difference and the time of flight shou
also depend in principle on the reduced acceleration. B
interestingly, this dependence is rather weak in the con
tions where the patterns develop.

IV. PATTERN WAVELENGTH SELECTION

Now we investigate the wavelength selected at a cons
driving acceleration. Note that the choice of a constant
celeration is made in reference to the basic model of a sin
and completely inelastic block driven by a vibrating plate.
this case, the acceleration is the fundamental paramete
scribing the block dynamics and in particular the rates
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collision and energy transfer~see@2# and references therein!.
Since the layer dissipates most of its energy on each colli
with the plate, it is natural to consider in a first approxim
tion that the center of mass will follow such a dynamics. W
monitored the wavelength of the pattern,l52p/k, using the
horizontal density autocorrelation function technique d
scribed in Ref.@11#, which marks the presence of the pea

In Fig. 5, we present simulation results atG53.6 where
the pattern is fully developed for two layer heightsNh56
and 12. The quantityv0

2/gk is plotted as a function ofHk
52pH/l. We recall that for the Faraday instability, corr
sponding to the parametric excitation of gravity waves, o
would get a dispersion relation~at the edge of instability!
v2/4gk5tanh(Hk) @30#. In this representation, we observ
two different regimes: ~i! at low frequencies a dispersiv
regime~we mean here that the wavelength dependsexplicitly

FIG. 3. Spatiotemporal diagram in arbitrary gray units of t
horizontal pressure on the plate as a function of the rescaled timft.
The results were obtained forf 515 Hz, G53.6, d51 mm, and
Nh512 layers of grains.

FIG. 4. Rescaled amplitude of the peaksp/a as a function of
frequencyf for G53.6. The horizontal line is the experimental d
terminationp/a54. Nh56, d51 mm, ~s!; Nh512,d51 mm ~j!;
Nh512, d50.5 mm~L!: Nh516, d51 mm ~m!.
n
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-
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on the impact frequency! such that the wavelength selected
surprisingly close to that given by the dispersion relation
gravity waves in a fluid@i.e., v2/4gk5O(1)] and ~ii ! at
larger frequencies a saturation regime (l52p/k5const)
with a crossover depending on the layer height. Now b
regimes are examined independently and computations m
in a large range of bead sizes, frequencies, layer heights,
accelerations.

A. The dispersive regime

Simulation results for the dispersive regime are presen
in Fig. 6. In this representation, we observe a collapse of
whole data set around a straight slope bounded by two
treme values: 0.25,Hk,2.8 and 0.4,v0

2/gk,1.5. For
Hk,0.25, we could not obtain stable patterns; the heigh
the peaks being so large, we obtained a vertical rupture of
layer. We simulated the pattern formation using three ac
erations. We haveG52.5, just above the threshold, thenG
53.6, and alsoG56.8. In the last case, the collision fre
quency is just one period larger than forG53.6 and thus the
response isv05v/4. The data collapse is interrupted at hig
frequencies by wavelength saturationlsat(Nh ,d), whose val-
ues are reported in Fig. 7~see next subsection!. Note that
there is still in this representation some important data s
tering due, for the most part, to the difficulty of extracting
wavelength with a precision down to a few grain sizes. T
is essentially the meaning of the error bars in Figs. 6~b! and
7. It can be relatively important for small wavelengths~i.e.,
whenHk.1). Within the data scattering, we could not sho
in this representation systematic variations of the data
lapse with acceleration. The empirical best fit of the data
the straight line:

v0
2/gk5A1BHk ~2!

@see Fig. 6~a!# with A50.44 (60.02) and
B50.37 (60.01). We verified that these results are in re
sonable agreement with the wavelength selection obse
experimentally in 2D@10# and 3D@3,21# @see Fig. 6~b!#. For
the 2D case, we do not recover the slight shift of the exp

FIG. 5. Selected wavelengthl52p/k displayed in the form
v2/4gk as a function ofHk; v/2p is the driving. The continuous
line is y5tanhx. Plots for Nh56, d51 mm ~s!; Nh56, d
51.5 mm~h!; Nh512, d51 mm ~L!; Nh512, d51.5 mm~n!.
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8318 PRE 62E. CLÉMENT AND L. LABOUS
mental dispersion relation with the number of layers~not the
height! as was proposed earlier to fit the data@10#. This is
possibly due to the general experimental problems in
where interactions with the frontal boundaries might play
role. For the recent data set collected by Umbanhowar
Swinney@21# the proposed fitl/H5111.1(fAH/g)21.32 is
very close to our data in the regionHK<1 but seems to
exhibit a slight discrepancy forHK.1. In our understand-
ing, an open question is how much the weight of the satu
tion regime data~which should have been removed in pri
ciple! is still influencing the empirical fit proposed b
Umbanhowar and Swinney@21#. Such a spurious effec
could possibly have created a systematic deviation of th
to the upper part of the diagram as witnessed by curve
Fig. 6~b!.

Note that the presence of a restoring mechanism du
gravity ~the peaks are collapsing on the plate! is consistent
with the standard mechanical picture where the average
mentum density or the mass fluxes transferred during
energy input phase ('rVimpact/T) are driven by a pressur
difference on the scale of the wavelength ('DP/l). If we
estimate that the pressure difference scales with the p
amplitudep, i.e.,DP'rgp, we obtain the balance equatio

FIG. 6. Dispersive part of the selected wavelengthl52p/k
displayed in the formv0

2/gk as a function ofHk; v0/2p is the layer
response frequency. Plots forNh56, d51 mm ~s!; Nh56, d
51.5 mm ~h!; Nh512, d51 mm ~L!; Nh512, d51.5 mm ~n!.
~a! Dispersive part forG53.6 ~s!; 2.6 ~j!; 6.8 ~m! ~for many layer
heights and bead diameters!. The dotted line is the empirical linea
best fit and crosses are typical error bars.~b! Same data but com
pared with other empirical fits. Line 1 is from Ref.@10# in 2D for
Nh56, line 2 is from Ref.@10# in 2D for Nh512, line 3 is from Ref.
@3# for Nh56 in 3D, and line 4 is from Ref.@21# in 3D.
,
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fit
of

to

o-
e

ak

and since we also havep'a we obtainrav2'rga/l. This
relation is a dimensional argument that could explain w
we observe the limiting law for ‘‘pure’’ gravity waves
v0

2/gk→const at low frequencies, i.e., in the limit wherel
@H. This relation would agree with the qualitative pictu
given by Melo, Ubanbovar, and Swinney@3#. But at larger
frequencies~before saturation! the internal density and pres
sure waves play an important role as well@see Fig. 2~b!#
since now the peak amplitude is small, and we propose
the limiting restoring mechanism corresponds to the limiti
velocity of a shock wave caused by the impact with the b
tom plate. If we estimate its velocity to be of magnitudec
'AgH, we then propose a contribution to the dispersi
relation of the typev5ck and thusv2/gk'kH. As a con-
sequence, in our understanding, the selection mechanism
complex interplay between the possibilities of global def
mation of the granular layer~i.e., arching and peak ampli
tude! and the internal dynamics of pressure/density wa
due to the vertical impact.

Furthermore, in reference to the 3D patterns, we no
immediately that, in our framework of interpretation, th
transition from square to stripe occurs when both mec
nisms~gravity and pressure waves! are of the same magni
tude, i.e.,A>BHk. This corresponds more precisely, fo
lowing Ref. @12#, to v0

2/gk.0.96 andHk.1.4. It is thus
similar to the criterion proposed empirically by Bizonet al.
@12# to predict this transition, i.e.,f * 5 fAH/g>0.37. But
interestingly, for higher acceleration aroundG56, by apply-
ing our criterion (v0

2/gk.0.96⇒Hk.1.4), we get a predic-
tion for the transition that isf * 5 fAH/g>0.71. This last
prediction is really in close agreement with the experimen
finding of @3#. In this last situation, wherev05v/4, the tran-

FIG. 7. Influence of dissipation on the selected pattern. The f
pictures are obtained in the same conditions but for different di
pation coefficient parameters«0 @see Eq.~1!#.
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PRE 62 8319PATTERN FORMATION IN A VIBRATED GRANULAR . . .
sition is observed for 0.6, fAH/g&0.8.
In Fig. 7, we illustrate the fact that, in this regime, th

selection pattern does not depend on the detailed dissip
character of the granular collisions. It is essentially due
large scale momentum transfer. We display a picture of
waves for increasing restitution coefficient~decreasing dissi-
pation!. The selected wavelength stays constant but the
tem is moving progressively toward an extended fluidizat
when«0→1.

As a consequence, in the dispersive regime, the phys
picture we propose is to the best of our knowledge v
consistent with all the experimental and numerical res
available.

B. The saturation regime

Now, we focus on the saturating regime obtained at h
frequencies. We measure the saturation wavelengthlsat for
various pairs of parameters (Nh ,d). From our measurement
@see Fig. 8~a!#, we observe a roughly linear increase of th
selected length with the number of layers.

In Fig. 8~b!, we report some experimental data taken fro
Ref. @10# in 2D and extracted from Ref.@3# in 3D that show
saturation. The 2D case was obtained with a constant b
size ~1.5 mm aluminum beads!. We actually have a clea

FIG. 8. Saturation regime of the selected wavelength:lsat/d as
a function of the number of layersNh . ~a! Numerical results for
d50.5 ~* !, 1 ~s!, 1.5 ~l!, 2 ~j!, and 3 mm~m!; the straight line
is the theoretical prediction~see text!. ~b! Experimental data ex-
tracted from Fig. 2 of Ref.@10# ~s! and Fig. 3 of Ref.@3# ~j!.
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increase of the saturation wavelength value with the la
height. In the 3D case the layer height is almost the same
the three cases reported. The bead size is changed. Thu
see that the grain size effect on the saturation waveleng
quite important.

By monitoring the development of the pattern in thedis-
persive regime, we realized that at the first and second im
pact a typical wavelengthl0 is already selected characteri

FIG. 9. Time development of patterns in a numerical simulat
performed in the dispersive regime.~a! Is a visualization of the
wavelength growth.~b! Shows the early selected wavelengthl0

~after the first two collisions! for a simulation in the dispersive
regime as a function of the saturation wavelengthlsat obtained at
higher frequencies and for a constant accelerationG53.6.
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8320 PRE 62E. CLÉMENT AND L. LABOUS
ing a modulation of the horizontal density@see Fig. 9~a!#. At
long times, we get the expected dispersive wavelengthl` in
agreement with relation~2!. This initial length l0(Nh ,d)
correspondsexactlyto the saturation lengthlsat(Nh ,d) that
we obtain at steady state when the frequency is increa
~keeping a constant acceleration! @see Fig. 9~b!#.

Now we relate this early pattern selection to the gene
issue of a granular stripe instability, initially at rest and in t
absence of gravity@see Fig. 10~a!#. We calculate the horizon
tal density distributions(x)5*r(x,z)dz. The power spec-
trum of this distributionSk5^s̃ks̃k* & is monitored as a func
tion of time @Fig. 10~b!#. We observe a band of unstab
modes with the fastest growing wavelength characterized
the wave numberks52p/ls . In Fig. 10~c!, we report this
selected wavelengthls as a function of the saturation wave
length for various sets of experiments,lsat(Nh ,d). We ob-
serve thatls.l0.lsat(Nh ,d). This is why, in the follow-
ing, we report results of a systematic study on the patt
created by the impact of a moving plate on a layer of gra

V. STUDY OF IMPACTED LAYERS OF GRAINS

A. Constant restitution coefficient

In the following, we report results on the internal dynam
ics of an impacted layer of dissipative grains in 2D. A mo
complete study of this issue was done by Labous@31# and
will be reported elsewhere@32#. For the present purpose, w
present only the results relevant to a discussion of the pa
wavelength selection of the ‘‘granular Faraday’’ waves. T

FIG. 10. Layer instability after impact at a constant velocity~no
gravity!. ~a! Visualization of the pattern formation after impact.~b!
Time evolution of the horizontal density structure factorSk . From
bottom to top,t50.03, 0.06, 0.09, 0.12, and 0.15 s.~c! Saturation
wavelengthlsat as a function of the selected wavelengthls for the
same number of layersNh .
ed

l
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rn
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waves we are interested in are compaction/dilation waves
hard spheres. The problem of energy and momentum tran
due to a shock with a plate has been studied analytically
by numerical simulations for 1D columns of hard and dis
pative grains@25,33#. Note that these waves may be qui
different from those obtained in the case of columns made
soft particles@34,29,35,36# where the detailed value of th
interparticle potential plays a central role.

As a first step, the study is made with values of the re
tution coefficient independent of the impact velocities. W
simulate a layer ofNh grains~vertical direction! initially pre-
pared in a quasitriangular array but with a typical separat
between grains arounds0 , the value being taken at random
around this mean. The values ofs0 we are interested in are
such thats0 /d!1 ~typically s0 /d ranging between 0.01 an
0.1!. In this compacted limit, the exact value ofs0 /d does
not matter much. The grains have an initial velocity2U0 ,
i.e., pointing toward the plate. We identify two importa
phases as a result of the impact.

~i! Just after the impact, an upward compression wave
a downward dilation wave cross the layer vertically at ve
large speedc'U0d/s0 . These waves cross the system on
time scaletcoll.Nhs0 /U0 . They do not cause global distor
tion of the layer but are extremely dissipative. To illustra
this point, we display in Fig. 11 the time evolution of th
kinetic energy as a function of the rescaled timet/tcoll , for a
layer ofNh540 grains and several different restitution coe
ficients. We see that for (12«)Nh*2 we already have an
almost complete dissipation of the energy, as already no
by Luding, Herrmann, and Blumen@37#.

~ii ! After the passage of those waves an expansion of
layer follows, characterized by a vertical increasing veloc
gradient G5]V(z)/]z.0, and subsequently, after a tim
texp, the layer will lose contact with the plate to expand
vacuum. The time scale to reach this expansion is such
texpG5O(1) @see Fig. 12~a!#. A systematic study of the scal
ing behavior of this gradient shows that we have

G'
U0

H
exp@2j~Nh21!~12«!# ~3!

with j.1.160.15 @see Fig. 12~b!#.

FIG. 11. Layer kinetic energyE(t) rescaled by the initial kinetic
energy E0 before impact as a function of rescaled timet*
5t/tcoll . The layer height isNh540 beads. From top to bottom
«51, 0.99, 0.98, 0.97, 0.96, and 0.94.
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At the beginning of the expansion phase, the layer exh
its a quasiuniform agitation characterized by a tempera
T* . A systematic study of this temperature~taken just above
the bottom plate! shows thatT* .(Gd)2, i.e.,

T* 5C1

U0
2

H2 d2 exp@22j~Nh21!~12«!# ~4!

with C151.160.1. @see Fig. 12~c!# During the expansion
phase, the layer is unstable and a wavelength characteriz
density modulation in the horizontal direction shows up.
Fig. 13~a!, we represent the value of this wavelength f

FIG. 12. Internal dynamics of an impacted layer of grains.~a!
texp, the time to reach the expansion phase, rescaled by the vel
gradientG as a function of the parameterX5(12«)(Nh21). ~b!
Log-normal plot of the rescaled velocity gradientGH/U0 as a func-
tion of X. ~c! TemperatureT* at the onset of the expansion pha
rescaled by the velocity gradientT* /(Gd)2 as a function ofX.
-
re

g a

r

different constant coefficients of restitution« ~we recall that
now « is independent of the collision velocities!. We can
distinguish two limiting regimes such that

ls /d'1/~12«2!b, ~5!

where b.1 in the strong dissipation regime@i.e., 12«
5O(1)] and b50.4460.08.0.5 in the weak dissipation
limit ~i.e., 12«→0). Note that such scaling relations b
tween a structural length scale and a restitution coeffic
have already been identified in the case of freely evolv
granular gases. The scaling withb51 is naturally occurring
in the formation of 1D structures and clusters with long la
ing multiple contacts@25# and the scaling withb.0.5 is
naturally occurring at the onset of a structural instability
weakly dissipative granular gases described by dissipa
hydrodynamics@38#. Importantly, for constant restitution co
efficients, these regimes show a selected wavelength v
ls that is independentof the number of layersNh .

B. Velocity dependent restitution coefficient

Now, we pursue the same study but with a restituti
coefficient depending on the collision velocity. We have
the early stage an impact with a layer moving at a cons
velocity 2Ui , and therefore, a typical initial restitution co
efficient « i512«0(Ui /u* )a ~for our simulations we usea

ity

FIG. 13. Dependence of the selected wavelengthls on dissipa-
tion for an impacted layer.~a! Simulation results for a constan
restitution coefficient«, rescaled selected wavelengthls(12«2)/d
plotted as a function of the dissipation (12«2). ~b! Simulation
results for a velocity dependent restitution coefficient; the resca
wavelengthls(12« f

2)1/2/d is plotted as a function of the initia
restitution« i . The layer heights used areNh56,8,10,12; the hori-
zontal dotted line isy514.7.
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51
5). But after a large number of impacts, the average kin

energy of the layer is decreased and we get a typical fi
restitution coefficient« f512«0(U f /u* )a characterized by
a typical collision velocityU f just before the expansio
phase.

Therefore, using a relation setting the scale of the typ
collision velocity to the order of the agitation at the onset
the expansion phase, i.e.,

T* [U f
2, ~6!

we estimate the final restitution coefficient using the relat

12« f

12« i
5~U f /Ui !

a. ~7!

Now we report the results of a series of numerical simu
tions with varying layer heights and initial restitution coef
cients. For each numerical simulation, we determine the fi
restitution coefficient« f according to relation~7! and we
measure the selected wavelengthls . In Fig. 13~b! we plot
the rescaled wavelengthls(12« f

2)1/2/d as a function of the
initial restitution coefficient« i . Thus we estimate the scalin
relation

ls /d5
C

~12« f
2!b ~8!

with b.0.5 andC.1562. Now the dependence of the s
lected wavelength on the number of layers is implicitly co
tained in the value of the final restitution coefficient sin
this last relation depends on the final temperature obta
from relation~4!. The b5 1

2 exponent indicates that the s
lection mechanism for the wavelength rather correspond
the weak dissipation limit we identified previously~although
the dissipation was quite high initially!.

C. The saturation regime revisited

As a consequence of putting together Eqs.~5!–~8! we get
a mean-field theoretical prediction for the saturation wa
length. The value ofls obtained numerically by solving
these relations is displayed in Fig. 8~a!. In the limit « i→1,
we obtain an asymptotic formula for the selected wavelen
for any a andNh :

ls /d'
1

~12« i !
1/2Nh

a/2 expFa2 j~Nh21!~12« i !G . ~9!

We realize here that the exponential growth of the selec
length with the number of layers is damped by the we
value of the coefficienta characterizing the velocity depen
dence of the dissipation. Thus, the two antagonistic effe
give an approximately linear increase of the wavelength.
od
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a consequence, the presence of an intrinsic instability du
the dissipative character of the granular collisions preve
the selected wavelength from decreasing~when the fre-
quency is increased! to a value smaller than this intrinsi
dissipative length. The vibrations are here only to sustain
motion due to this imposed density modulation and drive
dynamics such that larger densities in the layer create la
agitations and thus larger pressures. As a consequenc
horizontal flow develops toward lower pressure regions a
the alternative horizontal motion is sustained at the pace
the vertical impacts with the plate. The dependence of
saturated wavelength on the number of layers is related
the dissipation properties of the grains, which depend on
typical collision velocities between two grains. Also, in th
case of real systems the restitution coefficient on binary c
lision may vary with the grain size~see@24#!. For example,
in the case of the Herz-Kuwabara-Kono model, one wo
get«0'd21/2. Thus, it is clear that a systematic study of t
variation this selected saturation wavelength with the b
size and the layer height could possibly shed some light
the real dissipation mechanisms taking place at the gran
level for a dense assembly of vibrated grains.

VI. CONCLUSION

In conclusion, we presented a numerical study of
pattern-forming instability occurring in a 2D vibrated lay
of dissipative grains. We focused on mechanisms leadin
the formation of stationary oscillating surface peaks that
separated by a well defined wavelengthl52p/k. We iden-
tified two distinct regimes. The first regime~dispersive! cor-
responds to a periodic excitation of the layer where the gr
ity restoring force plays an important role in competitio
with internal density and pressure waves created by repe
impacts with the bottom plate. The dispersion relation
such that we have in general a relation of the typev0

2/4gk
5O(1) with a value smaller for thin channels and larger f
thick channels~sizes being compared to the selected wa
length!. The frequencyf 05v0/2p is the pattern respons
frequency. We propose an empirical relationv0

2/4gk5A
1BHk with values ofA and B almost independent of the
driving acceleration. The agreement with available expe
mental data is quite satisfactory. At larger frequencies~ac-
celeration being constant! this dispersion relation is inter
rupted by a saturation regime where the wavelength is n
independent of the frequency. We show how this wavelen
selection is related to an instability occurring spontaneou
in dissipative gases We also stress the influence of the
tailed microscopic dissipation laws affecting the values
the selected wavelength.
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